Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Chem Biol ; 77: 102403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856901

RESUMO

Within their native milieu of the cell, the activities of enzymes are controlled by a range of factors including protein interactions and post-translational modifications. The involvement of these factors in fundamental cell biology and the etiology of diseases is stimulating interest in monitoring enzyme activities within tissues. The creation of synthetic substrates, and their use with different imaging modalities, to detect and quantify enzyme activities has great potential to propel these areas of research. Here we describe the latest developments relating to the creation of substrates for imaging and quantifying the activities of glycoside hydrolases, focusing on mammalian systems. The limitations of current tools and the difficulties within the field are summarised, as are prospects for overcoming these challenges.


Assuntos
Glicosídeo Hidrolases , Mamíferos , Animais , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
2.
Angew Chem Int Ed Engl ; 62(40): e202309306, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37582679

RESUMO

Fluorogenic substrates are emerging tools that enable studying enzymatic processes within their native cellular environments. However, fluorogenic substrates that function within live cells are generally incompatible with cellular fixation, preventing their tandem application with fundamental cell biology methods such as immunocytochemistry. Here we report a simple approach to enable the chemical fixation of a dark-to-light substrate, LysoFix-GBA, which enables quantification of glucocerebrosidase (GCase) activity in both live and fixed cells. LysoFix-GBA enables measuring responses to both chemical and genetic perturbations to lysosomal GCase activity. Further, LysoFix-GBA permits simple multiplexed co-localization studies of GCase activity with subcellular protein markers. This tool will aid studying the role of GCase activity in Parkinson's Disease, creating new therapeutic approaches targeting the GCase pathway. This approach also lays the foundation for an approach to create fixable substrates for other lysosomal enzymes.


Assuntos
Glucosilceramidase , Doença de Parkinson , Humanos , Glucosilceramidase/metabolismo , Fluorescência , Corantes Fluorescentes/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Lisossomos/metabolismo , Mutação
3.
Proc Natl Acad Sci U S A ; 119(29): e2200553119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858317

RESUMO

Loss of activity of the lysosomal glycosidase ß-glucocerebrosidase (GCase) causes the lysosomal storage disease Gaucher disease (GD) and has emerged as the greatest genetic risk factor for the development of both Parkinson disease (PD) and dementia with Lewy bodies. There is significant interest into how GCase dysfunction contributes to these diseases, however, progress toward a full understanding is complicated by presence of endogenous cellular factors that influence lysosomal GCase activity. Indeed, such factors are thought to contribute to the high degree of variable penetrance of GBA mutations among patients. Robust methods to quantitatively measure GCase activity within lysosomes are therefore needed to advance research in this area, as well as to develop clinical assays to monitor disease progression and assess GCase-directed therapeutics. Here, we report a selective fluorescence-quenched substrate, LysoFQ-GBA, which enables measuring endogenous levels of lysosomal GCase activity within living cells. LysoFQ-GBA is a sensitive tool for studying chemical or genetic perturbations of GCase activity using either fluorescence microscopy or flow cytometry. We validate the quantitative nature of measurements made with LysoFQ-GBA using various cell types and demonstrate that it accurately reports on both target engagement by GCase inhibitors and the GBA allele status of cells. Furthermore, through comparisons of GD, PD, and control patient-derived tissues, we show there is a close correlation in the lysosomal GCase activity within monocytes, neuronal progenitor cells, and neurons. Accordingly, analysis of clinical blood samples using LysoFQ-GBA may provide a surrogate marker of lysosomal GCase activity in neuronal tissue.


Assuntos
Doença de Gaucher , Glucosilceramidase , Doença de Parkinson , Doença de Gaucher/enzimologia , Doença de Gaucher/genética , Glucosilceramidase/análise , Glucosilceramidase/genética , Humanos , Corpos de Lewy/enzimologia , Doença por Corpos de Lewy/enzimologia , Lisossomos/enzimologia , Mutação , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Especificidade por Substrato , alfa-Sinucleína/metabolismo
4.
Biochem Biophys Res Commun ; 617(Pt 1): 16-21, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35667241

RESUMO

The CMP-sialic acid synthetase (CSS) activates free sialic acid (Sia) to CMP-Sia using CTP, and is prerequisite for the sialylation of cell surface glycoconjugates. The vertebrate CSS consists of two domains, a catalytic N-domain and a non-catalytic C-domain. Although the C-domain is not required for the CSS enzyme to synthesize CMP-Sia, its involvement in the catalytic activity remains unknown. First, the real-time monitoring of CSS-catalyzed reaction was performed by 31P NMR using the rainbow trout CSS (rtCSS). While a rtCSS lacking the C-domain (rtCSS-N) similarly activated both deaminoneuraminic acid (Kdn) and N-acetylneuraminic acid (Neu5Ac), the full-length rtCSS (rtCSS-FL) did not activate Kdn as efficiently as Neu5Ac. These results suggest that the C-domain of rtCSS affects the enzymatic activity, when Kdn was used as a substrate. Second, the enzymatic activity of rtCSS-FL and rtCSS-N was measured under various concentrations of CMP-Kdn. Inhibition by CMP-Kdn was observed only for rtCSS-FL, but not for rtCSS-N, suggesting that the inhibition was C-domain-dependent. Third, the inhibitory effect of CMP-Kdn was also investigated using the mouse CSS (mCSS). However, no inhibition was observed with mCSS even at high concentrations of CMP-Kdn. Taken together, the data demonstrated that the C-domain is involved in the CMP-Kdn-dependent inhibition of rtCSS, which is a novel regulation of the Sia metabolism in rainbow trout.


Assuntos
N-Acilneuraminato Citidililtransferase , Oncorhynchus mykiss , Animais , Monofosfato de Citidina/análogos & derivados , Camundongos , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferase/metabolismo , Ácidos Neuramínicos , Ácidos Siálicos/metabolismo
5.
Nat Chem Biol ; 18(3): 332-341, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35210619

RESUMO

Understanding the function and regulation of enzymes within their physiologically relevant milieu requires quality tools that report on their cellular activities. Here we describe a strategy for glycoside hydrolases that overcomes several limitations in the field, enabling quantitative monitoring of their activities within live cells. We detail the design and synthesis of bright and modularly assembled bis-acetal-based (BAB) fluorescence-quenched substrates, illustrating this strategy for sensitive quantitation of disease-relevant human α-galactosidase and α-N-acetylgalactosaminidase activities. We show that these substrates can be used within live patient cells to precisely measure the engagement of target enzymes by inhibitors and the efficiency of pharmacological chaperones, and highlight the importance of quantifying activity within cells using chemical perturbogens of cellular trafficking and lysosomal homeostasis. These BAB substrates should prove widely useful for interrogating the regulation of glycosidases within cells as well as in facilitating the development of therapeutics and diagnostics for this important class of enzymes.


Assuntos
Acetais , Lisossomos , Fluorescência , Glicosídeo Hidrolases , Humanos , alfa-Galactosidase
6.
Org Biomol Chem ; 19(37): 8057-8062, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34494637

RESUMO

We report the rational design and synthesis of C2-modified DGJ analogues to improve the selective inhibition of human GALA over other glycosidases. We prepare these analogues using a concise route from non-carbohydrate materials and demonstrate the most selective inhibitor 7c (∼100-fold) can act in Fabry patient cells to drive reductions in levels of the disease-relevant glycolipid Gb3.


Assuntos
alfa-Galactosidase
7.
J Med Chem ; 63(15): 8231-8249, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32608236

RESUMO

Sialin, encoded by the SLC17A5 gene, is a lysosomal sialic acid transporter defective in Salla disease, a rare inherited leukodystrophy. It also enables metabolic incorporation of exogenous sialic acids, leading to autoantibodies against N-glycolylneuraminic acid in humans. Here, we identified a novel class of human sialin ligands by virtual screening and structure-activity relationship studies. The ligand scaffold is characterized by an amino acid backbone with a free carboxylate, an N-linked aromatic or heteroaromatic substituent, and a hydrophobic side chain. The most potent compound, 45 (LSP12-3129), inhibited N-acetylneuraminic acid 1 (Neu5Ac) transport in a non-competitive manner with IC50 ≈ 2.5 µM, a value 400-fold lower than the KM for Neu5Ac. In vitro and molecular docking studies attributed the non-competitive character to selective inhibitor binding to the Neu5Ac site in a cytosol-facing conformation. Moreover, compound 45 rescued the trafficking defect of the pathogenic mutant (R39C) causing Salla disease. This new class of cell-permeant inhibitors provides tools to investigate the physiological roles of sialin and help develop pharmacological chaperones for Salla disease.


Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Lisossomos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Simportadores/metabolismo , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Células HeLa , Humanos , Ligantes , Simulação de Acoplamento Molecular/métodos , Estrutura Secundária de Proteína , Ratos
8.
Int J Mol Sci ; 20(3)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30709055

RESUMO

The mammalian mono-α2,8-sialyltransferase ST8Sia VI has been shown to catalyze the transfer of a unique sialic acid residues onto core 1 O-glycans leading to the formation of di-sialylated O-glycosylproteins and to a lesser extent to diSia motifs onto glycolipids like GD1a. Previous studies also reported the identification of an orthologue of the ST8SIA6 gene in the zebrafish genome. Trying to get insights into the biosynthesis and function of the oligo-sialylated glycoproteins during zebrafish development, we cloned and studied this fish α2,8-sialyltransferase homologue. In situ hybridization experiments demonstrate that expression of this gene is always detectable during zebrafish development both in the central nervous system and in non-neuronal tissues. Intriguingly, using biochemical approaches and the newly developed in vitro MicroPlate Sialyltransferase Assay (MPSA), we found that the zebrafish recombinant enzyme does not synthetize diSia motifs on glycoproteins or glycolipids as the human homologue does. Using comparative genomics and molecular phylogeny approaches, we show in this work that the human ST8Sia VI orthologue has disappeared in the ray-finned fish and that the homologue described in fish correspond to a new subfamily of α2,8-sialyltransferase named ST8Sia VIII that was not maintained in Chondrichtyes and Sarcopterygii.


Assuntos
Sialiltransferases/genética , Sialiltransferases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Animais , Células COS , Sistema Nervoso Central/metabolismo , Chlorocebus aethiops , Simulação por Computador , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Glicolipídeos/química , Glicoproteínas/química , Células HEK293 , Humanos , Filogenia , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato , Distribuição Tecidual , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
9.
Chem Sci ; 9(39): 7585-7595, 2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30393518

RESUMO

Glycans form one of the four classes of biomolecules, are found in every living system and present a huge structural and functional diversity. As an illustration of this diversity, it has been reported that more than 50% of the human proteome is glycosylated and that 2% of the human genome is dedicated to glycosylation processes. Glycans are involved in many biological processes such as signalization, cell-cell or host pathogen interactions, immunity, etc. However, fundamental processes associated with glycans are not yet fully understood and the development of glycobiology is relatively recent compared to the study of genes or proteins. Approximately 25 years ago, the studies of Bertozzi's and Reutter's groups paved the way for metabolic oligosaccharide engineering (MOE), a strategy which consists in the use of modified sugar analogs which are taken up into the cells, metabolized, incorporated into glycoconjugates, and finally detected in a specific manner. This groundbreaking strategy has been widely used during the last few decades and the concomitant development of new bioorthogonal ligation reactions has allowed many advances in the field. Typically, MOE has been used to either visualize glycans or identify different classes of glycoproteins. The present review aims to highlight recent studies that lie somewhat outside of these more traditional approaches and that are pushing the boundaries of MOE applications.

10.
Bioconjug Chem ; 29(10): 3377-3384, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30192128

RESUMO

Mammalian sialyltransferases transfer sialic acids onto glycoproteins and glycolipids within the Golgi apparatus. Despite their key role in glycosylation, the study of their enzymatic activities is limited by the lack of appropriate tools. Herein, we developed a quick and sensitive sialyltransferase microplate assay based on the use of the unnatural CMP-SiaNAl donor substrate. In this assay, an appropriate acceptor glycoprotein is coated on the bottom of 96-well plate and the sialyltransferase activity is assessed using CMP-SiaNAl. The alkyne tag of SiaNAl enables subsequent covalent ligation of an azido-biotin probe via CuAAC and an antibiotin-HRP conjugated antibody is then used to quantify the amount of transferred SiaNAl by a colorimetric titration. With this test, we evaluated the kinetic characteristics and substrate preferences of two human sialyltransferases, ST6Gal I and ST3Gal I toward a panel of asialoglycoprotein acceptors, and identified cations that display a sialyltransferase inhibitory effect.


Assuntos
Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Biotina/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida/métodos , Colorimetria/métodos , Glicoproteínas/metabolismo , Células HEK293 , Peroxidase do Rábano Silvestre/química , Humanos , Limite de Detecção , Espectrometria de Massas/métodos , Espectroscopia de Prótons por Ressonância Magnética , Sialiltransferases/química , Especificidade por Substrato , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , beta-Galactosídeo alfa-2,3-Sialiltransferase
11.
J Inherit Metab Dis ; 41(3): 515-523, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29294191

RESUMO

The development of metabolic oligosaccharide engineering (MOE) over the past two decades enabled the bioimaging studies of glycosylation processes in physio-pathological contexts. Herein, we successfully applied the chemical reporter strategy to image the fate of sialylated glycoconjugates in healthy and sialin-deficient patient fibroblasts. This chemical glycomics enrichment is a powerful tool for tracking sialylated glycoconjugates and probing lysosomal recycling capacities. Thus, such strategies appear fundamental for the characterization of lysosomal storage diseases.


Assuntos
Glicômica/métodos , Engenharia Metabólica/métodos , Ácido N-Acetilneuramínico/análise , Ácido N-Acetilneuramínico/metabolismo , Oligossacarídeos/metabolismo , Imagem Individual de Molécula/métodos , Estudos de Casos e Controles , Fracionamento Químico , Técnicas de Química Combinatória/métodos , Humanos , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Redes e Vias Metabólicas/fisiologia , Oligossacarídeos/análise , Oligossacarídeos/química
12.
Chembiochem ; 18(13): 1251-1259, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28395125

RESUMO

Sialylation of glycoproteins and glycolipids is catalyzed by sialyltransferases in the Golgi of mammalian cells, whereby sialic acid residues are added at the nonreducing ends of oligosaccharides. Because sialylated glycans play critical roles in a number of human physio-pathological processes, the past two decades have witnessed the development of modified sialic acid derivatives for a better understanding of sialic acid biology and for the development of new therapeutic targets. However, nothing is known about how individual mammalian sialyltransferases tolerate and behave towards these unnatural CMP-sialic acid donors. In this study, we devised several approaches to investigate the donor specificity of the human ß-d-galactoside sialyltransferases ST6Gal I and ST3Gal I by using two CMP-sialic acids: CMP-Neu5Ac, and CMP-Neu5N-(4pentynoyl)neuraminic acid (CMP-SiaNAl), an unnatural CMP-sialic acid donor with an extended and functionalized N-acyl moiety.


Assuntos
Antígenos CD/metabolismo , Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Monofosfato de Citidina/análogos & derivados , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Antígenos CD/química , Antígenos CD/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Monofosfato de Citidina/química , Monofosfato de Citidina/metabolismo , Ácido N-Acetilneuramínico do Monofosfato de Citidina/química , Expressão Gênica , Glicolipídeos/química , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Células HEK293 , Humanos , Cinética , N-Acilneuraminato Citidililtransferase/genética , N-Acilneuraminato Citidililtransferase/metabolismo , Neisseria meningitidis/química , Neisseria meningitidis/enzimologia , Polissacarídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/química , Sialiltransferases/química , Sialiltransferases/genética , Especificidade por Substrato , beta-Galactosídeo alfa-2,3-Sialiltransferase
13.
Glycobiology ; 26(11): 1151-1156, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27543325

RESUMO

Natural and synthetically modified cytidine monophosphate activated sialic acids (CMP-Sias) are essential research assets in the field of glycobiology: among other applications, they can be used to probe glycans, detect sialylation defects at the cell surface or carry out detailed studies of sialyltransferase activities. However, these chemical tools are notoriously unstable because of hydrolytic decomposition, and are very time-consuming and costly to obtain. They are nigh impossible to store with satisfactory purity, and their preparation requires multiple laborious purification steps that usually lead to heavy product loss. Using in situ time-resolved 31P phosphorus nuclear magnetic resonance (31P NMR), we precisely established the kinetics of formation and degradation of a number of CMP-Sias including CMP-Neu5Ac, CMP-Neu5Gc, CMP-SiaNAl and CMP-SiaNAz in several experimental conditions. 31P NMR can be carried out in undeuterated solvents and is a sensitive and nondestructive technique that allows for direct in situ monitoring and optimization of chemo-enzymatic syntheses that involve phosphorus-containing species. Thus, we showed that CMP-sialic acid derivatives can be robustly obtained in high yields using the readily available Neisseria meningitidis CMP-sialic acid synthase. This integrated workflow takes less than an hour, and the freshly prepared CMP-Sias can be directly transferred to sialylation biological assays without any purification step.


Assuntos
Monofosfato de Citidina/química , Sondas Moleculares/química , Polissacarídeos/análise , Ácidos Siálicos/química , Monofosfato de Citidina/biossíntese , Monofosfato de Citidina/síntese química , Sondas Moleculares/biossíntese , Sondas Moleculares/síntese química , N-Acilneuraminato Citidililtransferase/metabolismo , Neisseria meningitidis/enzimologia , Ácidos Siálicos/biossíntese , Ácidos Siálicos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...